环球网校是美国纳斯达克上市企业欢聚时代(NASDAQ:YY)旗下品牌 | 住房和城乡建设部 建筑人才培训合作单位
您现在的位置在: > 时事新闻 > 社会 >

彭翕成武汉华中师范大学国家数字化学习工程技术研究中心骑白马的

2022-12-23 来源:网络 作者:佚名

围棋有多少变化?

彭翕成

武汉 华中师范大学国家数字化学习工程技术研究中心

#

骑白马的未必是王子 #

也可能是唐僧

#

叫唐僧的未必是玄奘 #

也可能是一行 #

唐僧是大家很熟悉的人物了。他俗家姓陈,法号玄奘,后来受唐朝皇帝委任去西天取经,改姓为“唐”,以表示自己是来自东土大唐的和尚,身负祖国荣誉和使命。唐僧可看作是唐朝和尚的简称,但由于《西游记》影响实在太大,所以现在唐僧基本上成了玄奘的代名词。其实,唐朝佛教盛行,出了很多高僧。譬如下面要介绍的一行法师。 
#
#

一行法师(683年-727年),本名张遂,唐代著名的数学家、科学家、天文学家。他天赋聪敏、潜心窥测,717年他来到京城长安,给唐玄宗作顾问。他把数学和天文学结合起来,创造了世界上最早的不等间距二次内插法公式;他组织并领导的在全国的12个点对北极高度和日影长短的测量,是世界上第一次对地球子午线的实测;他对历法科学作出了重要的贡献,推算出“开元大衍历”,后世有人称赞它“历千古而无误差”,可惜他的著作后来大部分失散了。 # 
#

据说,一行法师的围棋悟性很高,发表过一些独特见解。沈括在《梦溪笔谈》中记载一行法师思考过的一个问题:大家都说围棋千变万化,千古无重局,那围棋到底有多少种变化呢? #

#
#

围棋是中华民族传统文化中的瑰宝,体现了中华民族对智慧的追求。古人常以“琴棋书画”来评价一个人的才华和修养,其中的“棋”指的就是围棋。 # 

#

围棋自古以来就有“纵横十九道,迷煞多少人”之说。所谓“纵横十九道”,就是指正方形棋盘上横竖都是19路格子,共有19×19=361个交叉点。一行法师认为:对于每一个交叉点,处于下黑子、下白子或空着三种情况之一。361个交叉点,就有3的361次方那么多可能的变化。 # 
#

3^361=17408965065903192790718823807056436794660272495026354119482811870680105167618464984116279288988714938612096988816320780613754987181355093129514803369660572893075468180597603≈1.74*10^172。 
#
#

这是一个天文数字。即使每一秒钟下一局棋,要下完这样多的局数,也要5.52*10^164年,即3^361/(60*60*24*365)≈5.52*10^164。 
#
#

一行法师所计算的是棋盘上可能出现的局面,但一局棋是由若干个局面组合而成。于是便有人提出了下面的计算方法。在第一步棋落下的时候,有361种选择,在第二步棋落下的时候,有360种选择,…… 按照乘法原理,共有361×360×359×358×……×2×1种可能,结果就是361的阶乘:361!。 

#

#

361!=1437923258884890654832362511499863354754907538644755876127282765299227795534389618856841908003141196071413794434890585968383968233304321607713808837056557879669192486182709780035899021100579450107333050792627771722750412268086775281368850575265418120435021506234663026434426736326270927646433025577722695595343233942204301825548143785112222186834487969871267194205609533306413935710635197200721473378733826980308535104317420365367377988721756551345004129106165050615449626558110282424142840662705458556231015637528928999248573883166476871652120015362189137337137682618614562954409007743375894907714439917299937133680728459000034496420337066440853337001284286412654394495050773954560000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 
#
#

≈1.43*10^768。 # 
#

两种计算结果361!和3^361哪个更大呢?不用算就知道361!大。两者都是由361个数字相乘,3^361中的361个数字都是3,361!中除了3,2,1,其它的都比3大。 
#
#

数学模型中所谓变化,没有考虑围棋规则,只是在围棋盘上,用围棋子能摆出来的变化而已。围棋允许打劫和回提,这使得变化还要做更深层次的考虑。 # 
#

上述两模型有其思考角度,但都有不足。围棋软件开发,也需要考虑围棋变化数。它综合上述两种思考方式,将之作为两个维度,分别是状态空间和博弈树。 

#

#

状态空间不区分形成的过程,只考虑当前的盘面,而博弈树既考虑当前盘面,也区分形成该盘面的过程。3^361 描述的是状态空间总量,而 361! 描述的是博弈数大小,然而这两个数字都有待进一步修正。状态空间应该指的是合法状态空间,有些局面是不可能出现的,所以3^361还要打个折扣。计算博弈树的361!,将比赛步数的上限定为 361 步,则是有所低估。 # 
#

对于围棋来说,数学工作者到底是外行,下面来看看专业棋手怎么说。 
#
#

韩国棋手刘昌赫认为实际上的棋局是有穷尽的。实际上的棋局,远远地少于数学方法计算的数字。围棋是两人在轮流对下,在一般的情况下,是一半黑棋,一半白棋,即使提子,也相差不多;又由于围棋要有气才能生存,黑棋、白棋都不能占尽空格。而一盘棋要能够分出胜负,一般来说,又要使黑白子各在100手以上,这使得全空格或大多数的空格是不可能的。棋的总变化里可行变化才有实用价值和研究价值,不可行变化不能反映棋的本质,只有参考价值,没有实用价值,所以有很多假设局面是根本不可能出现的。 

#

#

而中国棋手马晓春认为,围棋可以打劫,提走对方的棋子后然后重新开始。一局棋中,同一局面多次出现也是可能的,所以说围棋是没有办法穷尽的。 
#
#

不管怎么说,围棋的变化就算有限,也非人力所能掌控。世事如棋局局新,下棋的乐趣不就在于局面的变幻莫测么?就好比一个数学家面对一个含有多变量的难题,每次探究都有新意。 # 
#

责编:admin 返回顶部  打印

关于我们联系我们友情链接网站声明网站地图广告服务帮助中心